Astronomers discover, image new planet in planetary system very similar to our own

HR 8799 planetary system
Four planets orbit star HR 8799
An international team of astronomers has discovered and imaged a fourth giant planet outside our solar system, a discovery that further strengthens the remarkable resemblances between a distant planetary system and our own.
 
The research is published Dec. 8 in the advance online version of the journal Nature.
 
The astronomers say the planetary system resembles a supersized version of our solar system.
 
"Besides having four giant planets, both systems also contain two 'debris belts' composed of small rocky or icy objects, along with lots of tiny dust particles," said Benjamin Zuckerman, a UCLA professor of physics and astronomy and co-author of the Nature paper.
 
Our giant planets are Jupiter, Saturn, Uranus and Neptune, and our debris belts include the asteroid belt between the orbits of Mars and Jupiter and the Kuiper Belt, beyond Neptune's orbit.
 
The newly discovered fourth planet (known as HR 8799e) orbits a bright star called HR 8799, which lies some 129 light years from Earth and is faintly visible to the naked eye. The mass of the HR 8799 planetary system is much greater than our own. Astronomers estimate that the combined mass of the four giant planets may be 20 times greater than the mass of all the planets in our solar system, and the debris belt counterparts also contain much more mass than our own.
 
The new planet joins three previously discovered planets that were the subjects of a 2008 paper in the journal Science reporting the first-ever images of a planetary family orbiting a star other than our sun. Four of the co-authors of the new Nature paper, including Zuckerman, were also co-authors on that Science paper.
 
"This is the fourth imaged planet in this planetary system, and only a tiny percentage of known exoplanets (planets outside our solar system) have been imaged; none has been imaged in multiple-planet systems other than those of HR 8799," Zuckerman said.
 
All four planets orbiting HR 8799 are similar in size, likely between five and seven times the mass of Jupiter. The newly discovered planet orbits HR 8799 more closely than the other three. If it were in orbit around our sun, astronomers say, it would lie between the orbits of Saturn and Uranus.
 
The astronomers used the Keck II telescope at Hawaii's W.M. Keck Observatory to obtain images of the fourth planet. Zuckerman's colleagues are from Canada's National Research Council (NRC), Lawrence Livermore National Laboratory (LLNL) in California, and Lowell Observatory in Arizona.
 
"We reached a milestone in the search for other worlds in 2008 with the discovery of the HR 8799 planetary system," said Christian Marois, an NRC astronomer and lead author of the Nature paper. "The images of this new inner planet are the culmination of 10 years' worth of innovation, making steady progress to optimize every aspect of observation and analysis. This allows us to detect planets located ever closer to their stars and ever further from our own solar system."
 
"The four massive planets pull on each other gravitationally," said co-author Quinn Konopacky, a postdoctoral researcher at LLNL. "We don't yet know if the system will last for billions of years or fall apart in a few million more. As astronomers carefully follow the HR 8799 planets during the coming decades, the question of the stability of their orbits could become much clearer."
 
The origin of these four giant planets remains a puzzle; neither of the two main models of planet formation can account for all four.
 
"There's no simple model that can form all four planets at their current location," said co-author Bruce Macintosh of LLNL. "It's going to be a challenge for our theoretical colleagues."
 
It is entirely plausible that this planetary system contains additional planets closer to the star than these four planets, quite possibly rocky, Earth-like planets, Zuckerman said. But such interior planets are far more difficult to detect, he added.
 
"Images like these bring the exoplanet field, which studies planets outside our solar system, into an era of exoplanet characterization," said co-author Travis Barman, a Lowell Observatory exoplanet theorist. "Astronomers can now directly examine the atmospheric properties of four giant exoplanets that are all the same young age and that formed from the same building materials."
 
Detailed study of the properties of HR 8799e will be challenging due to the planet's relative faintness and its proximity to its star. To overcome those limitations, Macintosh is leading an effort to build an advanced exoplanet imager, called the Gemini Planet Imager, for the Gemini Observatory. This new instrument will physically block the starlight and allow quick detection and detailed characterization of planets similar to HR 8799e. UCLA and the NRC are also contributing to Gemini Planet Imager.
 
James Larkin, a UCLA professor of physics and astronomy, is building a major component of the imager, which is scheduled to arrive at the Gemini South Telescope in Chile late next year.
 
The research reported in Nature was funded by NASA, the U.S. Department of Energy and the National Science Foundation Center for Adaptive Optics. For more information, visit the NRC's website at www.nrc-cnrc.gc.ca.
 
UCLA is California's largest university, with an enrollment of more than 38,000 undergraduate and graduate students. The UCLA College of Letters and Science and the university's 11 professional schools feature renowned faculty and offer 328 degree programs and majors. UCLA is a national and international leader in the breadth and quality of its academic, research, health care, cultural, continuing education and athletic programs. Six alumni and five faculty have been awarded the Nobel Prize.
 
For more news, visit the UCLA Newsroom and follow us on Twitter.

Media Contacts

Stuart Wolpert,
310-206-0511
swolpert@support.ucla.edu
Related Images
Terms of Use University of California Office of Media Relations and Public Outreach
© 2014 UC Regents.