Environment + Climate

Oceans slowed global temperature rise, scientists report

Heat trapped below the surface will begin moving up kicking off a warming cycle

|
Argofloat
Argo program

The study included direct measurements of ocean temperatures from the global array of 3,500 Argo floats and other ocean sensors.

A new study of ocean temperature measurements shows that in recent years, extra heat from greenhouse gases has been trapped in the subsurface waters of the Pacific and Indian oceans, thus accounting for the slowdown in the global surface temperature increase observed during the past decade, researchers say.

A specific layer of the Indian and Pacific oceans between 300 and 1,000 feet below the surface has been accumulating more heat than previously recognized, according to climate researchers from UCLA and NASA’s Jet Propulsion Laboratory. They also found the movement of warm water has affected surface temperatures. The results were published July 9 in the journal Science.

During the 20th century, as greenhouse gas concentrations increased and trapped more heat on Earth, global surface temperatures also increased. However, starting in the early 2000s though greenhouse gases continued to trap extra heat, the global average surface temperature stopped climbing for about a decade and even cooled a bit.

In the study, researchers analyzed direct ocean temperature measurements, including observations from a global network of about 3,500 ocean temperature probes known as the Argo array. These measurements show temperatures below the surface have been increasing.

Josh Willis, Veronica Nieves and William Patzert
Tony Greicius/JPL Institutional Communications
Josh Willis, Veronica Nieves and William Patzert

The Pacific Ocean is the primary source of the subsurface warm water found in the study, though some of that water now has been pushed to the Indian Ocean. Since 2003, unusually strong trade winds and other climatic features have been piling up warm water in the upper 1,000 feet of the western Pacific, pinning it against Asia and Australia.

“The western Pacific got so warm that some of the warm water is leaking into the Indian Ocean through the Indonesian archipelago,” said Veronica Nieves, lead author of the study and a UCLA researcher with the UCLA Joint Institute for Regional Earth System Science and Engineering, a scientific collaboration between UCLA and NASA’s Jet Propulsion Laboratory.

The movement of the warm Pacific water westward pulled heat away from the surface waters of the central and eastern Pacific, which resulted in unusually cool surface temperatures during the last decade. Because the air temperature over the ocean is closely related to the ocean temperature, this provides a plausible explanation for the global cooling trend in surface temperature, Nieves said.

Cooler surface temperatures also are related to a climatic pattern called the Pacific Decadal Oscillation, which moves in a 20- to 30-year cycle. It has been in a cool phase during the entire time surface temperatures showed cooling, bringing cooler-than-normal water to the eastern Pacific and warmer water to the western side. There currently are signs the pattern may be changing, with observations showing warmer-than-usual water in the eastern Pacific.

"Given the fact the Pacific Decadal Oscillation seems to be shifting to a warm phase, ocean heating in the Pacific will definitely drive a major surge in global surface warming," Nieves said.

Previous attempts to explain the global surface temperature cooling trend have relied more heavily on climate model results or a combination of modeling and observations, which may be better at simulating long-term impacts over many decades and centuries. This study relied on observations, which are better for showing shorter-term changes over 10 to 20 years.

Pauses of a decade or more in Earth’s average surface temperature warming have happened before in modern times, with one occurring between the mid-1940s and late 1970s.

“In the long term, there is robust evidence of unabated global warming,” Nieves said.

Co-authors are Josh Willis and William Patzert of NASA’s Jet Propulsion Laboratory.

Media Contact